Full Content is available to subscribers

Subscribe/Learn More  >

Implementation of a Visco-Elastic Model Into Slender Rod Theory for Deepwater Polyester Mooring Line

[+] Author Affiliations
Gang Ma, Liping Sun, Hongwei Wang

Harbin Engineering University, Harbin, Heilongjiang, China

Paper No. OMAE2014-23594, pp. V08AT06A049; 5 pages
  • ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 8A: Ocean Engineering
  • San Francisco, California, USA, June 8–13, 2014
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4550-9
  • Copyright © 2014 by ASME


Polyester mooring line is gradually becoming popular in deepwater engineering because of its lightweight property. In catenary mooring system, the horizontal restoring force comes from the gravity effect of the catenary mooring line which occupies the payload of the platform. Thus, the synthetic mooring line overcomes the drawback together with the taut mooring system which utilizes the axial elasticity to offer restoring force. The synthetic mooring line may only be one seventh weight of the steel mooring line and has low tensile stiffness which leads to a large stretch, and nonlinear material characteristics such as visco-elasticity. These two terms need to improve the slender rod theory which is proposed by Garrett for no stretched lines and improved by Paulling and Webster for small stretched lines. In this topic, a method for large stretched slender rod theory is introduced with the finite element method to deal with the problems of the large rotation and the large deformation. And then a linear visco-elastic model in the stretch-tension relation is utilized to simulate the properties of polyester line such as creep, strain-stress hysteresis and excitation period-dependent stiffness. Finally, an implementation method for integrating the visco-elastic model into slender rod theory is proposed with the numerical method and corroborated by a specified case which has the analytical results.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In