0

Full Content is available to subscribers

Subscribe/Learn More  >

New Insights Into the Flooding Sequence of the Costa Concordia Accident

[+] Author Affiliations
Hendrik Dankowski, Philipp Russell, Stefan Krüger

Hamburg University of Technology, Hamburg, Germany

Paper No. OMAE2014-23323, pp. V08AT06A025; 10 pages
doi:10.1115/OMAE2014-23323
From:
  • ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 8A: Ocean Engineering
  • San Francisco, California, USA, June 8–13, 2014
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4550-9
  • Copyright © 2014 by ASME

abstract

The tragic accident of the Costa Concordia in January 2012 was one of the most severe large passenger ship accident in Europe in recent times followed by a tremendous public interest. We present the results of an in-depth technical investigation of the flooding sequence which lead to the heeling and grounding of the ship.

A fast and explicit numerical flooding simulation method has been developed in the last years to better understand accidents like this one caused by complex and large scale flooding events. The flooding simulation is validated with the help of results from model tests and has been successfully applied to the investigation of several other severe ship accidents. It is based on a quasi-static approach in the time domain which evaluates the hydrostatic equilibrium at each time step. The water fluxes through the openings are computed by a hydraulic model based on the Bernoulli equation. Large and partly flooded openings are taken into account as well as conditional openings like the opening, closing and breaking of doors. The fluxes are integrated in the time domain by a predictor-corrector integration scheme to obtain the water volumes in each compartment involved in the flooding sequence.

Due to the fact that the accident happened in calm water at moderate wind speeds close to the shore of the island Giglio this quasi-static numerical flooding simulation can be applied. The results of the technical investigation of the Costa Concordia accident obtained with the help of the developed method are presented. These results match well with the heel and trim motions observed during the accident and the chain of events which lead to the final position of the vessel on the rocks in front of the island Giglio.

The explicit and direct approach of the method leads to a fast computational run-time of the numerical method. This allows to study several possible accident scenarios within a short period to investigate for example the influence of the opening and closing of watertight doors and to identify a most likely flooding scenario which lead to this tragic accident.

Copyright © 2014 by ASME
Topics: Accidents , Floods

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In