0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Simulation of Tsunami Run-Up and Inundation for the 2011 Tōhuku-Oki Tsunami: A Parametric Analysis for Tsunami Run-Up and Wave Height

[+] Author Affiliations
Debashis Basu, Kaushik Das, Ron Janetzke, Biswajit Dasgupta, John Stamatakos, Deborah Waiting

Southwest Research Institute®, San Antonio, TX

Robert Sewell

R.T. Sewell Associates, Louisville, CO

Paper No. OMAE2014-23138, pp. V08AT06A012; 19 pages
doi:10.1115/OMAE2014-23138
From:
  • ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 8A: Ocean Engineering
  • San Francisco, California, USA, June 8–13, 2014
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4550-9
  • Copyright © 2014 by ASME

abstract

This paper presents computational results for predicting earthquake-generated tsunami from a developed integrated computational framework. The computational framework encompasses the entire spectrum of modeling the earthquake-generated tsunami source, open-sea wave propagation, and wave run-up including inundation and on-shore effects. The present work develops a simplified source model based on pertinent local geologic and tectonic processes, observed seismic data (i.e., data obtained by inversion of seismic waves from seismographic measurements), and geodetic data (i.e., directly measured seafloor and land deformations). These source models estimated configurations of seafloor deformation used as initial waveforms in tsunami simulations. Together with sufficiently accurate and resolved bathymetric and topographic data, they provided the inputs needed to numerically simulate tsunami wave propagation, inundation and coastal impact. The present work systematically analyzes the effect of the tsunami source model on predicted tsunami behavior and the associated variability for the 2011 Tōhuku-Oki tsunami. Simulations were carried out for the 2011 Tōhuku -Oki Tsunami that took place on March 11, 2011, from an MW 9.1 earthquake. The numerical simulations were performed using the fully nonlinear Boussinesq hydrodynamics code, FUNWAVE-TVD (distributed by the University of Delaware). In addition, a sensitivity analysis was also carried out to study the effect of earthquake magnitude on the predicted wave height. The effect of coastal structure on the wave amplification at the shore is also studied. Simulated tsunami results for wave heights are compared to the available observational data from GPS (Global Positioning System) at the central Miyagi location.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In