Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Study of Strucural Responses of a Ship With Multi-Segments and Variable Cross-Section Beams

[+] Author Affiliations
Jun Ding, Chao Tian, Xueliang Wang, Xiaoming Cheng, Peng Yang

China Ship Scientific Research Center, Wuxi, Jiangsu, China

Paper No. OMAE2014-24702, pp. V04BT02A060; 10 pages
  • ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 4B: Structures, Safety and Reliability
  • San Francisco, California, USA, June 8–13, 2014
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4543-1
  • Copyright © 2014 by ASME


The motion and structural response to wave loading are studied experimentally for a large ship modeled with multiple segments and beams of variable cross-sections. As opposed to the traditional method with small number of segments and beams of uniform cross-section, the multi-segmented model with beams of variable cross-sections can more accurately simulate some of the hull properties that will otherwise be neglected.

In this paper, the design method for the multi-segmented model is presented, and the model test results for the multi-segmented model with variable cross-section beams are compared with the traditional uniform beams and less segmented model for calm water, regular and irregular wave conditions. The influences of the segment number, variable cross-section, vessel speed and wave height are investigated using the load forecasting methods based on the rigid body and hydroelastic theories. It has been found that using variable cross-section beams can simulate hull stiffness of each section more accurately, and with the increase of the segment number in the ship model, the high frequency characteristics of the bending response are better reflected. Furthermore, the calculation results agree well with the experimental data, and the hydroelastic theory is found to be able to predict the higher frequencies of the hull structural responses. At the same time, with the increase of the vessel speed and wave height, the bending moment and wave height show an obvious nonlinear relationship.

The methods and results presented in this paper have a certain guiding significance for the tank model tests and design of large ship structures.

Copyright © 2014 by ASME
Topics: Ships



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In