Full Content is available to subscribers

Subscribe/Learn More  >

The Effect of the Computational Grid Size on the Prediction of a Flammable Cloud Dispersion

[+] Author Affiliations
Adriana Miralles Schleder, Marcelo Ramos Martins

University of São Paulo, São Paulo, Brazil

Elsa Pastor Ferrer, Eulàlia Planas Cuchi

Universitat Politècnica de Catalunya - BarcelonaTech, Barcelona, Spain

Paper No. OMAE2014-24587, pp. V04BT02A043; 8 pages
  • ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 4B: Structures, Safety and Reliability
  • San Francisco, California, USA, June 8–13, 2014
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4543-1
  • Copyright © 2014 by ASME


The consequence analysis is used to define the extent and nature of effects caused by undesired events being of great help when quantifying the damage caused by such events. For the case of leaking of flammable and/or toxic materials, effects are analyzed for explosions, fires and toxicity. Specific models are used to analyze the spills or jets of gas or liquids, gas dispersions, explosions and fires. The central step in the analysis of consequences in such cases is to determine the concentration of the vapor cloud of hazardous substances released into the atmosphere, in space and time. With the computational advances, CFD tools are being used to simulate short and medium scale gas dispersion events, especially in scenarios where there is a complex geometry. However, the accuracy of the simulation strongly depends on diverse simulation parameters, being of particular importance the grid resolution. This study investigates the effects of the computational grid size on the prediction of a cloud dispersion considering both the accuracy and the computational cost.

Experimental data is compared with the predicted values obtained by means of CFD simulation, exploring and discussing the influence of the grid size on cloud concentration the predicted values.

This study contributes to optimize CFD simulation settings concerning grid definition when applied to analyses of consequences in environments with complex geometry.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In