0

Full Content is available to subscribers

Subscribe/Learn More  >

A Simplified Method for Quantitative Reliability and Integrity Analysis of SCRs

[+] Author Affiliations
Mir Emad Mousavi, Zaqie Reza, Sanjeev Upadhye, Vishnu Vijayaraghavan, Kevin Haverty

Aker Solutions, Houston, TX

Paper No. OMAE2014-24260, pp. V04BT02A026; 11 pages
doi:10.1115/OMAE2014-24260
From:
  • ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 4B: Structures, Safety and Reliability
  • San Francisco, California, USA, June 8–13, 2014
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4543-1
  • Copyright © 2014 by ASME

abstract

Quantitative reliability and integrity analysis of Steel Catenary Risers (SCR) can provide important information about their safety and towards their cost-effective and optimal design. SCRs are one of the commonly used riser systems in offshore production stations. The consequence of a SCR failure is significant; however, the overall safety of the riser is typically not quantified. Especially, because of the uncertainties associated with environmental conditions and structural capacities, quantitative reliability methods can take advantage of available data and developments in computing technology to provide a strong basis for their reliable engineering decision making. This paper presents a simplified approach for assessing the strength and fatigue reliability of SCRs, accounting for the uncertainties with their yield-strength and fatigue capacities as well as the environmental conditions. Moreover, the integrity-based optimal design of riser strength limit state for a target annual probability of failure is discussed. The fatigue reliability of the SCR system is also assessed in component and system levels. The proposed method is then applied to a typical SCR attached to a semi-submersible vessel under Gulf of Mexico conditions. Results of dynamic (time-domain) analyses under various environmental conditions are used to quantify the SCR safety and integrity and to optimize its design for a target annual probability of strength failure. By estimating the riser system probability of strength and fatigue failure in its lifetime, the strength and fatigue integrity indices, and the optimality factors of the riser sections for the strength limit state, suggestions are provided to improve the riser design. For example, it was found that considering the two main limit states of strength and fatigue failure of the SCR system, a strength failure at the taper stress joint is the likely mode of failure in this riser system, which has a probability of 0.0035 in its 25 years lifetime.

Copyright © 2014 by ASME
Topics: Reliability

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In