0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Evaluation of Energy Absorption in Ship-Offshore Fixed Platform Collisions

[+] Author Affiliations
Joao Travanca, Hong Hao

University of Western Australia, Crawley, WA, Australia

Paper No. OMAE2014-24118, pp. V04BT02A018; 10 pages
doi:10.1115/OMAE2014-24118
From:
  • ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 4B: Structures, Safety and Reliability
  • San Francisco, California, USA, June 8–13, 2014
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4543-1
  • Copyright © 2014 by ASME

abstract

Both the maritime traffic and the number of built offshore platforms have been continuously increasing over recent times. Among the structures built offshore, the fixed type constitutes the majority. The consequent diversity of plausible collision scenarios involving offshore platforms and passing ships must therefore consider aspects such as different ship size, different impact energy or different impact locations. For high energy collisions, large deformations are expected on both the platform and ship structures. It is expected that part of the energy absorption in the platform is confined to localized zones where plastic deformations take place, although the elastic strain energy may also be significant. For such impact problems, the amounts of strain energy in each structure are mainly dependent on the relative stiffness of the structures. By taking different ship and platform configurations as well as different contact points between the two bodies, different relative stiffness of the two structures can be tested in order to provide a clearer understanding of the dissipation of strain energy. The possible plastic deformation mechanisms are analyzed and simplified approaches are considered for prediction in comparison with the numerical results carried out by finite element analysis. Based on the results, some evaluations are made with respect to the code of practice in offshore platform design against ship impact.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In