0

Full Content is available to subscribers

Subscribe/Learn More  >

Symmetric Response of a Hydroelastic Scaled Container Ship Model in Regular and Irregular Waves

[+] Author Affiliations
Sheng Peng, Weiguo Wu, Zhengguo Liu, Yiwen Wang

Wuhan University of Technology, Wuhan, China

Pandeli Temarel, S. S. Bennett

University of Southampton, Southampton, UK

Paper No. OMAE2014-23860, pp. V04BT02A004; 10 pages
doi:10.1115/OMAE2014-23860
From:
  • ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 4B: Structures, Safety and Reliability
  • San Francisco, California, USA, June 8–13, 2014
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4543-1
  • Copyright © 2014 by ASME

abstract

Wave-induced vibrations, such as whipping and springing, of container carriers have been attracting much attention because of their effects on hull-girder bending moments and fatigue damage. An investigation has been carried out comparing experimental measurements and numerical predictions of symmetric wave-induced loads (i.e. vertical bending moment) of the latest River-sea link container ship design, LPP = 130 m. The dual mission characteristics, namely rivers and open seas, make this type of ship an extremely interesting type of container carrier, particularly in terms of springing and whipping.

A backbone beam segmented model is used in the experiments with the focus on springing- and whipping-induced vertical bending moments, for the model travelling at Fn = 0.21 in regular and long-crested irregular head waves, of 2.5m full-scale height or significant wave height. In addition higher order (harmonics) vertical bending moments (VBM) are also extracted from the experiments. The measurements are taken at amidships and the fore and aft quarters. Numerical predictions, for both the full-scale vessel and segmented model, are obtained using the two-dimensional linear hydroelasticity theories, where the hull structure is idealized as a non-uniform beam and the fluid actions evaluated using strip theory.

The measured model test results, in relatively moderate conditions based on a particular area of operation for this low-draught vessel, indicate that nonlinear springing accounts for a significant portion of the total wave-induced bending moments in regular and, to an extent, irregular waves and slamming effects are small due to the operational area selected. The numerical predictions in regular waves show that linear hydroelasticity analysis can only predict similar trends in the variation of the VBM and the resonance peak. On the other hand, in long crested irregular waves the linear hydroelasticity analysis provides peak statistics that are commensurate with the measurements. The numerical predictions were obtained for two variants, having L = LPP and L = 0.9 LPP, the latter corresponding to the length of the backbone.

Copyright © 2014 by ASME
Topics: Containers , Waves , Ships

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In