Full Content is available to subscribers

Subscribe/Learn More  >

A Study on the Application of Hybrid Panels to Ship Structures

[+] Author Affiliations
Takao Yoshikawa, Masahiro Maeda

Kyushu University, Fukuoka, Japan

Yukichi Takaoka

Kawasaki Heavy Industries, Ltd., Kobe, Japan

Paper No. OMAE2014-23762, pp. V04AT02A054; 8 pages
  • ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 4A: Structures, Safety and Reliability
  • San Francisco, California, USA, June 8–13, 2014
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4542-4
  • Copyright © 2014 by ASME


The application of hybrid panels composed of polyurethane foam cores and steel faceplates to hull structures was studied.

First, the strength and collapse behavior of the panels were examined using three-point bending tests for hybrid panels with different core densities. Based on the experimental results, low-density core materials, such as those having a density of 300 kg/m3, are recommended for hybrid panels with respect to strength and weight. The structural strength of hybrid panels was investigated through a series of calculations utilizing FEA for beams clamped at both ends under uniform pressure by changing the thickness of the faceplates and core, and the length of the clamped span.

Taking account of the structural advantages of hybrid panel structures, two kinds of applications for hybrid panels are proposed.

One is in the inner bottom structure of bulk carriers. There is the possibility of improving the residual strength of hybrid panels after they are subjected to severe impacts. The dynamic characteristics of hybrid panels were investigated. It was confirmed that the residual deformation of hybrid structures after impact loading is less than that of ordinary stiffened structures of the same weight.

The other application is in the structural members of pressurized LPG (Liquefied Petroleum Gas) tanks. In utilizing hybrid panels in LPG tanks, the difference in rigidity between the core and skin produces a high peak bending stress in the vicinity of the clamped ends. In this paper, measures for the mitigation of this phenomenon are proposed. Also, the difference in rigidity between core and skin also produces weak points in hybrid panels such as the interface between the core and skin-plate. The applicability of hybrid panels in tank systems was examined by numerical methods utilizing the experimental results and it was confirmed that the shear and peel strength of the interface is more than sufficient.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In