Full Content is available to subscribers

Subscribe/Learn More  >

Continuous Characterisation of Near-Surface Soil Strength

[+] Author Affiliations
Michael Cocjin, David White, Susan Gourvenec

University of Western Australia, Perth, WA, Australia

Paper No. OMAE2014-23469, pp. V003T10A010; 7 pages
  • ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 3: Offshore Geotechnics
  • San Francisco, California, USA, June 8–13, 2014
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4541-7
  • Copyright © 2014 by ASME


A sound understanding of near-surface soil strength is essential for the accurate prediction of the response of structures laid on or shallowly embedded in the seabed. However, characterisation of the uppermost region of the seabed, which is typically very soft and at a low-stress state, is extremely challenging. This paper demonstrates a novel technique for characterising the in situ undrained shear strength of near-surface soils using a newly-developed pile penetrometer. The pile penetrometer is vertically embedded into the near-surface soil and is driven laterally. A simple calculation of the resistance mobilised over the embedded depth of the pile penetrometer is presented along with its application to the continuous measurement of spatial variation in near-surface strength in virgin and disturbed regions of soil.

Copyright © 2014 by ASME
Topics: Soil



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In