0

Full Content is available to subscribers

Subscribe/Learn More  >

Determination of Design Metocean Conditions by Response Based Analysis

[+] Author Affiliations
Y. Drobyshevski

INTECSEA Pty Ltd, Perth, WA, AustraliaUniversity of Tasmania, Launceston, TAS, Australia

J. R. Whelan, H. Wadhwa

INTECSEA Pty Ltd, Perth, WA, Australia

V. Anokhin

Woodside Energy Ltd, Perth, WA, Australia

Paper No. OMAE2014-24657, pp. V01BT01A055; 16 pages
doi:10.1115/OMAE2014-24657
From:
  • ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 1B: Offshore Technology
  • San Francisco, California, USA, June 8–13, 2014
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4538-7
  • Copyright © 2014 by ASME

abstract

Response Based Analysis (RBA) aims at prediction of the long term distributions of critical responses such as motions, accelerations, wave loads, which have significant impact on the design of a floating system. As compared with the conventional analysis, which predicts the responses of the facility to the N-year return period metocean conditions, RBA provides directly the N-year return period responses by analysing the statistics of their long term time histories. Another outcome of RBA is the Design Metocean Conditions (DMCs) which are combinations of sea state, wind and current causing the corresponding N-year response. The knowledge of the DMCs enables the more detail time domain analysis and model tests to be performed for a set of critical combinations of metocean parameters. It also enables all the associated responses to be determined.

The RBA framework is generally well addressed in the literature, but the DMC identification methods are not necessarily clearly established. The objective of this paper is to present the theoretical background, numerical method and an example for the determination of the N-year return period responses and the associated DMCs for a floating facility. The method includes prediction of the N-year response, identification of the metocean combinations within the available time history which produce this response, determination of the required percentile of the short term response to match the N-year response, and the search for the most probable DMC within the joint probability density of the metocean parameters. Features of the method are discussed and results are presented for several critical responses of a weather vaning vessel.

Copyright © 2014 by ASME
Topics: Design

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In