0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Analysis of Second-Order Wave Loads on Large-Volume Marine Structures in a Current

[+] Author Affiliations
Yan-Lin Shao, Jens Bloch Helmers

DNV GL AS, Høvik, Norway

Paper No. OMAE2014-24586, pp. V01BT01A049; 11 pages
doi:10.1115/OMAE2014-24586
From:
  • ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 1B: Offshore Technology
  • San Francisco, California, USA, June 8–13, 2014
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4538-7
  • Copyright © 2014 by ASME

abstract

A time-domain Higher-Order Boundary Element Method (HOBEM) based on cubic shape functions for second-order wave-current-body interaction developed by Shao & Faltinsen [1] is further refined by investigating the feasibility of adopting the unstructured meshes on the free surface and body surfaces from an open source mesh generator [2]. When the steady local flow effect is considered in the time-domain boundary-value-problem formulation, the advection terms in the free surface are part of the sources of numerical instability. In this paper, the advection terms are taken care of in an implicit way in a 4th order Runge-Kutta scheme with much better stability. Some numerical examples extensively studied in the literature are studied in order to validate the present numerical model.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In