0

Full Content is available to subscribers

Subscribe/Learn More  >

Analysis of Autonomous Underwater Gliders Motion for Ocean Research

[+] Author Affiliations
Lei Gao, Ran He, Zhiguo Zhang

Huazhong University of Science and Technology, Wuhan, Hubei, China

Yangge Li

Wuhan Foreign Language School, Wuhan, Hubei, China

Paper No. OMAE2014-24534, pp. V01BT01A044; 6 pages
doi:10.1115/OMAE2014-24534
From:
  • ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 1B: Offshore Technology
  • San Francisco, California, USA, June 8–13, 2014
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4538-7
  • Copyright © 2014 by ASME

abstract

Underwater gliders, a type of highly efficient underwater vehicle which uses gravity and buoyancy for propulsion, has been studied for a long time during the last 3 decades. This paper describes the development of the principle dynamic models of a general underwater glider, including hydrodynamic forces and buoyancy effects. The numerical analysis model was developed for the underwater glider motion. Dynamic forces equations including the model’s buoyancy, gravity, and hydrodynamic forces in gliding are derived. Gliding velocities with changes of the net buoyancy are compared. The numerical method was used to calculate the hydrodynamics coefficient of the glider. Dynamic characteristics of the Seaglider and SLOCUM have been used as validation objects for the numerical method. The glide angle is merely the function of the lift/drag ratio and has no relation to the net buoyancy. The gliding velocity would increase when the buoyancy increases.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In