0

Full Content is available to subscribers

Subscribe/Learn More  >

Dynamic Behavior of a Mistuned Air Turbine: Comparison Between Simulations and Measurements

[+] Author Affiliations
Linus Pohle, Lars Panning-von Scheidt, Joerg Wallaschek, Jens Aschenbruck, Joerg R. Seume

Leibniz Universität Hannover, Hannover, Germany

Paper No. GT2014-26025, pp. V07BT33A015; 11 pages
doi:10.1115/GT2014-26025
From:
  • ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
  • Volume 7B: Structures and Dynamics
  • Düsseldorf, Germany, June 16–20, 2014
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4577-6
  • Copyright © 2014 by ASME

abstract

Due to manufacturing tolerances, wear during operation or regeneration processes like maintenance operation, the structural properties of turbine blades deviate from design condition to reference blades. This deviation usually causes higher vibration amplitudes and as a consequence a lower service life expectation. Many different calculation methods can be used to simulate these increased amplitudes of mistuned blades. The major resulting problem is on the one hand to capture the occurring deviation of the eigenfrequencies from the reference blade and on the other hand to incorporate these real deviations in simulations. Solving these problems with a simplified experimental setup will make it possible to predict the maximum amplitude and to avoid costly experiments in a rotating turbine.

The aim of the paper is to verify a simulation of the vibration amplitude by experiments using a reduction method to calculate a mistuned system in reasonable time. The results of the chosen simulation are compared to experiments in a rotating turbine.

To reduce the number of degrees of freedom of the full finite-element model and the computational effort, a multi-step reduction method is used. In the simulation, the centrifugal force, the structural damping, the steady static pressure on the blades, and the mistuning are considered. To find the occurring deviations of each manufactured blade, an experimental modal analysis is performed for every single blade in a non-rotating setup with the eigenfrequencies of every single blade as an output. The single-stage results of the simulation are subsequently compared to experiments in a 5-stage air turbine in which the vibration amplitudes and the eigenfrequencies of every blade in the last rotor blade row are measured by a tip-timing system.

Copyright © 2014 by ASME
Topics: Simulation , Turbines

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In