Full Content is available to subscribers

Subscribe/Learn More  >

Identification of Contact Area From Full Field Displacement Surface Measurements

[+] Author Affiliations
Eric Chatelet, Thouraya Nouri Baranger, Georges Jacquet-Richardet, Aurélien Saulot

Université de Lyon, Villeurbanne, France

Paper No. GT2014-25504, pp. V07AT34A004; 7 pages
  • ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
  • Volume 7A: Structures and Dynamics
  • Düsseldorf, Germany, June 16–20, 2014
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4576-9
  • Copyright © 2014 by ASME


One of the most common failure modes for turbomachinery wheels is associated to high-cycle fatigue of blades. A practical way to extend working life is obtained through the introduction of specific devices that allow a reduction in vibrational magnitudes during resonance. Different kinds of components are used such as shrouds and wires for power industries and under platform dampers for aeronautics. The dry friction phenomenon between those devices and the blades induces nonlinear behaviors and flatten associated frequency response functions. This phenomenon is now well known and different modeling techniques of contact are available within numerical simulation softwares. Nevertheless, it is always difficult to estimate or to measure with sufficient precision the actual contact characteristics needed to run those softwares. Due to practical experimental capabilities, measurements are only possible quite far from the contact zone and major quantities such as the transverse loading for example are often unreachable directly.

In this paper, a new inverse methodology is presented. This method uses surface displacement measurements (obtained usually experimentally from conventional accelerometer and fast camera) in order to identify the characteristics of contact zones within elastic body assemblies. The new methodology is validated and illustrated by a numerical approach based on an academic set up.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In