Full Content is available to subscribers

Subscribe/Learn More  >

Rotordynamic Validation of an Ultra High Speed Multistage Centrifugal Compressor Stacked Rotor

[+] Author Affiliations
Giuseppe Vannini

GE Oil&Gas, Florence, Italy

Paper No. GT2014-27339, pp. V07AT31A038; 8 pages
  • ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
  • Volume 7A: Structures and Dynamics
  • Düsseldorf, Germany, June 16–20, 2014
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4576-9
  • Copyright © 2014 by ASME


The author’s company is currently developing some centrifugal compressor prototypes where the traditional rotor design based on shrunk on wheels and spacers is not suitable due to the specific service requirements (e.g. high peripheral speed or high temperature). For instance the development of a new centrifugal compressor technology aimed to reduce the number of compressor units needed to fulfill a given service is ongoing. In order to accomplish this challenging target a very high rotational speed is required together with special “high pressure ratio” centrifugal stages. The rotor mechanical configuration which has been selected here is a stacked configuration where each centrifugal wheel is integral with the relevant shaft portion. The several shaft portions are mated together through high precision toothed connections (Hirth couplings) and the assembly is secured through a pre-stretched tie-rod.

This rotor stacked configuration is not typical for the most of the industrial centrifugal compressors (a solid shaft with shrink fitted impellers is the common solution, as anticipated) but it is allowed by API standards [1], and it is referenced in Turbomachinery technical literature [2].

The rotordynamics of this special prototype is very challenging since it deals with a seven piece stacked rotor running supercritical. An extensive validation program was required in addition to careful design. This is the specific subject of the present paper which will cover the main following items: validation of the “rotor alone” rotordynamic modelization through comparison with the relevant ping test results, selection of special high speed journal bearings, and overview of the low and high speed balancing process. All these steps together finally allowed the author’s company to fully demonstrate the soundness of this stacked rotor technology for application in High Pressure Ratio Compression service.

Copyright © 2014 by ASME
Topics: Compressors , Rotors



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In