0

Full Content is available to subscribers

Subscribe/Learn More  >

An Experimental Frequency Response Characterization of MEMS Piezoresistive Pressure Transducers

[+] Author Affiliations
Adam M. Hurst, Timothy R. Olsen, Scott Goodman, Joe VanDeWeert, Tonghuo Shang

Kulite® Semiconductor Products Inc., Leonia, NJ

Paper No. GT2014-27159, pp. V006T06A031; 15 pages
doi:10.1115/GT2014-27159
From:
  • ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
  • Volume 6: Ceramics; Controls, Diagnostics and Instrumentation; Education; Manufacturing Materials and Metallurgy
  • Düsseldorf, Germany, June 16–20, 2014
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4575-2
  • Copyright © 2014 by ASME

abstract

Silicon micro-machined piezoresistive based pressure transducers are often used to make high frequency dynamic pressure measurements. The spectral or frequency response of these microelectromechanical systems (MEMS) is a function of the natural resonance of the sensor structure, sensor size, sensor packaging, signal conditioning and transducer mounting in the desired measurement location. The advancement of MEMS micro-fabrication, which has reduced sensor size dramatically, and the high elastic modulus of silicon have allowed the natural resonance of these devices to range from 100kHz to several MHz [1]. As a result, packaging and mounting at the point of measurement are the major factors that determine the flat (0dB) frequency response envelope of the transducer, which is typically quantified by a transfer function. The transfer function quantifies the difference both in magnitude and phase between an input signal and a measured signal in the frequency domain. The dynamic response of pressure transducers has historically been estimated via a unit step input in pressure created through a shock tube test that excites the high natural resonance of the chip. Unfortunately, these tests are less effective at accurately quantifying the frequency response of the transducer in the domain of greatest interest (DC-20kHz), specifically the bandwidth over which the response is flat (0dB). In this work, we present a test methodology using a speaker-driven dynamic pressure calibration setup for experimentally determining the transfer function of a pressure transducer from 1–50kHz. The test setup is validated using capacitive-based microphones with claimed flat spectral characteristics well beyond 50kHz. Using this test setup, we present experimental spectral response results for low-pressure miniature MEMS piezoresistive pressure transducers over the frequency range of 1–50kHz and qualitatively compare these results to traditional shock tube tests. The transducers characterized have been manufactured with several different standard sizes and front-end configurations.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In