0

Full Content is available to subscribers

Subscribe/Learn More  >

Development of a Conjugate Heat Transfer Simulation Methodology for Prediction of Steam Turbine Cool-Down Phenomena and Shell Deflection

[+] Author Affiliations
Debabrata Mukhopadhyay

GEITC, Bangalore, KA, India

Howard M. Brilliant, Xiaoqing Zheng

GE Power & Water, Schenectady, NY

Paper No. GT2014-25874, pp. V05CT20A005; 6 pages
doi:10.1115/GT2014-25874
From:
  • ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
  • Volume 5C: Heat Transfer
  • Düsseldorf, Germany, June 16–20, 2014
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4573-8
  • Copyright © 2014 by ASME

abstract

Shell deflection during shutdown, cool-down process is a phenomenon well known to the steam turbine community. The main reason for this phenomenon is slower cooling of the top half shell and a relative faster cooling of the bottom half shell. There are multiple reasons for such thermal behavior of the two half casings, including natural heat convection from the bottom half to the top half, asymmetrical distribution of mass, dissimilar behavior of thermal insulation over the top and the bottom halves, etc. Shell deflection poses considerable challenge to the clearance engineer in terms of configuring operating clearance which ensures rub free operations. Understanding the cool-down process for the rotor is also equally important as the allowable steam inlet temperature during the hot or warm restart will depend on prevailing local temperature of the rotor.

This paper describes an exemplary physics-based cool-down prediction methodology capable of accurately capturing the rotor cool-down process. The methodology involves development of a full 3D rotor casing thermal model, integrated conjugate heat transfer FE model and validated with measured field data.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In