Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Investigation Into Thermal Behavior of Steam Turbine Components: Part 4 — Natural Cooling and Robustness of the Over-Conductivity Function

[+] Author Affiliations
Gabriel Marinescu, Peter Stein, Michael Sell

Alstom, Power, Baden, Switzerland

Paper No. GT2014-25247, pp. V05CT20A003; 9 pages
  • ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
  • Volume 5C: Heat Transfer
  • Düsseldorf, Germany, June 16–20, 2014
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4573-8
  • Copyright © 2014 by Alstom Technologie AG


Steam turbine transient maneuvers have a significant impact on the cyclic fatigue life. Modern steam turbines are operated at high temperatures for optimal efficiency, which results in high time and space temperature gradients. A low initial metal temperature after standstill results in a high temperature difference to be overcome during the next startup and consequently a low lifetime at critical locations. To achieve the fastest possible start-up time without reducing the lifetime of the turbine components, the natural cooling must be captured accurately in calculation and the start-up procedure optimized. At the past two ASME conferences we presented three papers [1], [2], [3], about a 2D numerical procedure for the thermal regime calculation during natural cooling and startup. The analysis included the rotor, casings, valves and pipes. The main concept was to replace the thermal effect of the fluid convectivity by a fluid function K(T) called “over-conductivity”, which is calibrated vs. experimental data. The paper below shows: (a) the theoretical background of the over-conductivity function K(T) and (b) the equation of the correlation function f(T,p) between the fluid velocity and fluid temperature gradient. Both K(T) and f(T,p) are applicable for the flow within the large turbine cavities with negligible pressure gradient. The robustness of the K(T) function is verified on three different turbine configurations. For each machine a separate transient thermal model was built and the calculated temperatures were compared with the corresponding measured temperatures. At the end of the paper conclusions about the natural cooling features are presented.

Copyright © 2014 by Alstom Technologie AG



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In