Full Content is available to subscribers

Subscribe/Learn More  >

Investigation on the Effect of a Realistic Flow Field on the Adiabatic Effectiveness of an Effusion-Cooled Combustor

[+] Author Affiliations
L. Andrei, A. Andreini, C. Bianchini, B. Facchini, L. Mazzei

University of Florence, Firenze, FI, Italy

F. Turrini

Avio Aero, Rivalta di Torino, TO, Italy

Paper No. GT2014-26765, pp. V05CT18A013; 11 pages
  • ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
  • Volume 5C: Heat Transfer
  • Düsseldorf, Germany, June 16–20, 2014
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4573-8
  • Copyright © 2014 by ASME


Effusion cooling represents the state of the art of liner cooling technology for modern combustors. This technique consists of an array of closely spaced discrete film cooling holes and contributes to lower the metal temperature by the combined protective effect of coolant film and heat removal through forced convection inside each hole. Despite many efforts reported in literature to characterize the cooling performance of these devices, detailed analyses of the mixing process between coolant and hot gas are difficult to perform, especially when superposition and density ratio effects as well as the interaction with complex gas side flow field become significant. Furthermore, recent investigations on the acoustic properties of these perforations pointed out the challenge to maintain optimal cooling performance also with orthogonal holes, which showed higher sound absorption.

The objective of this paper is to investigate the impact of a realistic flow field on the adiabatic effectiveness performance of effusion cooling liners to verify the findings available in literature, which are mostly based on effusion flat plates with aligned crossflow, in case of swirled hot gas flow. The geometry consists of a tubular combustion chamber, equipped with a double swirler injection system and characterized by twenty-two rows of cooling holes on the liner. The liner cooling system employs slot cooling as well: its interactions with the cold gas injected through the effusion plate are investigated too.

Taking advantage of the rotational periodicity of the effusion geometry and assuming axisymmetric conditions at the combustor inlet, steady state RANS calculations have been performed with the commercial code ANSYS® CFX simulating a single circumferential pitch. Obtained results show how the effusion perforation angle deeply affects the flow-field around the corner of the combustor, in particular with a strong reduction of slot effectiveness in case of 90° angle value.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In