Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Investigation of Separated Shear Layer Over a Flat Plate for Various Angles of Attack and Tail Flap Deflections

[+] Author Affiliations
K. Anand, S. Sarkar

Indian Institute of Technology Kanpur, Kanpur, India

Paper No. GT2014-26113, pp. V05CT17A002; 11 pages
  • ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
  • Volume 5C: Heat Transfer
  • Düsseldorf, Germany, June 16–20, 2014
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4573-8
  • Copyright © 2014 by ASME


Shear layer development over a thick flat plate with a semi-circular leading edge is investigated for a range of angles of attack under different imposed pressure gradients for a Reynolds number of 2.44×105 (based on chord and free-stream velocity). The features of the separated shear layer are very well documented through a combination of surface pressure measurement and flow visualization by particle image velocimetry (PIV). The instability of the separated layer occurs because of enhanced receptivity of perturbations leading to the development of significant unsteadiness and three-dimensional motions in the second-half of the bubble. The onset of separation, transition and the point of reattachment are identified for varying angles of attack and imposed pressure gradients. The reattachment point shifts from 12.5% to 53% of chord resulting in enhancement of bubble length from 5% to 47%, while onset of transition shifts upstream from 14% to 7.5% as α increases. The Reynolds number based on the length of laminar shear layer is found to be in the range of 0.7×104 to 2.0×104. The separated shear layer fails to reattach attributing to bubble bursting at α = 12° for β = −45°, while, it bursts at α = 5° for β = +45°. The bubble falls in the category of short bubble for α < 3°, whereas, it becomes long for α ≥ 3°. The data concerning laminar portion and reattachment points agree well with the literature.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In