0

Full Content is available to subscribers

Subscribe/Learn More  >

A Comparative Numerical Study of Aerodynamics and Heat Transfer on Transitional Flow Around a Highly Loaded Turbine Blade With Flow Separation Using RANS, URANS and LES

[+] Author Affiliations
Meinhard T. Schobeiri, Ali Nikparto

Texas A&M University, College Station, TX

Paper No. GT2014-25828, pp. V05CT17A001; 13 pages
doi:10.1115/GT2014-25828
From:
  • ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
  • Volume 5C: Heat Transfer
  • Düsseldorf, Germany, June 16–20, 2014
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4573-8
  • Copyright © 2014 by ASME

abstract

The paper numerically and experimentally investigates the behavior of the boundary layer development and heat transfer along the suction and pressure surfaces of a highly loaded turbine blade with separation. To evaluate and compare the predictive capability of different numerical methods, Reynolds Averaged Navier-Stokes based solvers (RANS), Unsteady Reynolds Averaged Navier Stokes equation (URANS) as well as Large Eddy Simulation (LES) are used. The results of each individual numerical method are compared with the measurements. For this purpose, extensive boundary layer and heat transfer measurements were performed in the unsteady boundary layer cascade facility of the Turbomachinery Performance and Flow Research Laboratory (TPFL) of Texas A&M University. Aerodynamics experiments include measuring the onset of the boundary, its transition, separation and re-attachment using miniature hot wire probes. Heat transfer measurements along the suction and pressure surfaces were conducted utilizing a specially designed heat transfer blade that was instrumented with liquid crystal coating. Comparisons of the experimental and numerical results detail differences in predictive capabilities of the RANS based solvers and LES.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In