Full Content is available to subscribers

Subscribe/Learn More  >

An Approach for Predicting the Flow Regime in an Aero Engine Bearing Chamber

[+] Author Affiliations
Wolfram Kurz, Hans-Jörg Bauer

Karlsruhe Institute of Technology, Karlsruhe, Germany

Paper No. GT2014-26756, pp. V05CT16A037; 8 pages
  • ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
  • Volume 5C: Heat Transfer
  • Düsseldorf, Germany, June 16–20, 2014
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4573-8
  • Copyright © 2014 by ASME


The paper discusses an approach to predict the two-phase flow regime in an aero engine bearing chamber. In general, one of two distinct flow regimes can occur in a bearing chamber. At lower shaft speeds, the oil flow is only partially affected by the air flow, which is driven by the rotating shaft. At higher shaft speeds, however, the rotating air flow forces the oil film at the chamber walls to rotate, too. Thus, the two flow regimes correspond to two very different oil film distributions inside a bearing chamber presumably with significant consequences for the internal wall heat transfer. In order to determine the driving parameters for the flow regimes and the change between them, experiments were carried out with a bearing chamber test rig. With this test rig all relevant operating parameters as well as the geometry of the bearing chamber could be varied independently. The analysis of the experimental data allowed defining a general parameter which takes into account the chamber pressure, shaft speed, oil viscosity and chamber length. The influence of the oil flow rate and the overall dimensions are assessed qualitatively.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In