Full Content is available to subscribers

Subscribe/Learn More  >

A Theoretical and Experimental Analysis of the Sealing Capability of a Membrane Seal

[+] Author Affiliations
Stacie Tibos, Randhir Aujla, Przemyslaw Pyzik, Martin Lewis

Alstom, Rugby, UK

Sascha Justl

Alstom, Baden, Switzerland

Paper No. GT2014-26388, pp. V05CT16A029; 9 pages
  • ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
  • Volume 5C: Heat Transfer
  • Düsseldorf, Germany, June 16–20, 2014
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4573-8
  • Copyright © 2014 by Alstom Technologie AG


Improvements in turbine performance are increasingly being driven by the need to control leakage both in the main gas path as well as secondary air flow systems. Membrane seals have long been established as a method of sealing in some of the harshest of environments found in gas turbines. The membrane seal has a wide usage in gas turbines for stationary component interface sealing. The geometry is of plate construction with bulbous ends, the seals are assembled vertically and are retained by the component grooves. The grooves allow relative sliding and rotation against their surfaces a necessary feature, since during operation the seal needs to withstand relative movements due to thermal growth, vibratory forces, excitation and assembly loads. However, more accurate leakage estimates are required. Thus, in order to evaluate the complete performance characteristics of the seal for a wide range of working conditions, a theoretical and experimental campaign was undertaken.

The membrane seal performance curves were created based on a series of tests performed in a specially designed rig. The rig utilised an actuation system that allowed for the precise adjustment of the seal’s relative position in two directions while performing the tests at a given working condition. It was noted that not only the movement and deformation of the membrane but also, assembly clearances and surface condition of the components have an impact on the seal’s performance. To assist in the understanding of the influence of the changing parameters on the performance of the seal an FEA study was undertaken employing known data to aid the understanding and improve the knowledge of how the seal behaves under specific engine conditions. The evaluation gives confidence in the experimental test results.

Copyright © 2014 by Alstom Technologie AG



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In