0

Full Content is available to subscribers

Subscribe/Learn More  >

Impact of the Secondary Air System Design Parameters on the Calculation of Turbine Discs Windage

[+] Author Affiliations
Jose Maria Rey Villazón, Toni Wildow, Arnold Kühhorn

Brandenburgische Technische Universität, Cottbus, Germany

Robert Benton, Moritz Göhler

Rolls-Royce Deutschland Ltd & Co KG, Dahlewitz, Germany

Paper No. GT2014-26050, pp. V05CT16A018; 9 pages
doi:10.1115/GT2014-26050
From:
  • ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
  • Volume 5C: Heat Transfer
  • Düsseldorf, Germany, June 16–20, 2014
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4573-8
  • Copyright © 2014 by Rolls-Royce Deutschland Ltd & Co KG

abstract

The rotating components in gas turbines are very highly stressed as a result of the centrifugal and thermal loads. One of the main functions of the secondary air system (SAS) is to ensure that the rotating components are surrounded by air that optimizes disc lifing and integrity. The SAS is also responsible for the blade cooling flow supply, preventing hot gas ingestion from the main annulus into the rotor-stator cavities, and for balancing the net axial load in the thrust bearings. Thus, the SAS design requires a multidisciplinary compromise to provide the above functions, while minimizing the penalty of the secondary flows on engine performance.

The phenomenon known as rotor-stator drag or windage is defined as the power of the rotor moment acting on its environment. The power loss due to windage has a direct impact on the performance of the turbine and the overall efficiency of the engine. This paper describes a novel preliminary design approach to calculate the windage of the rotor-stator cavities in the front of a typical aero engine HP turbine. The new method is applied to investigate the impact of the SAS design parameters on the windage losses and on the properties of the cooling flows leading to the main annulus.

Initially, a theoretical approach is followed to calculate the power losses of each part of the HPT front air feed system. Then, a 1D-network integral model of the cavities and flow passages of the HPT front is built and enhanced with detailed flow field correlations. The new 1D-flow network model offers higher fidelity regarding local effects. A result comparison between the theoretical calculation and the prediction of the enhanced flow network model puts forward the relevance of the local flow field effects in the design concept of the SAS.

Using the enhanced 1D-flow network models, the SAS design parameters are varied to assess their influence on the windage and pumping power calculation. As a conclusion, the paper shows how the SAS design can have a significant influence on the HPT overall power and the air that is fed back into the turbine blade rows. Controlling these features is essential to bid a competitive technology in the aero engine industry.

Copyright © 2014 by Rolls-Royce Deutschland Ltd & Co KG
Topics: Design , Turbines , Disks

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In