0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Investigations on the Leakage and Rotordynamic Characteristics of Pocket Damper Seals: Part I — Effects of Pressure Ratio, Rotational Speed and Inlet Preswirl

[+] Author Affiliations
Zhigang Li, Zhenping Feng

Xi’an Jiaotong University, Xi’an, China

Jun Li

Xi’an Jiaotong University, Xi’an, ChinaCollaborative Innovation Center of Advanced Aero-Engine, Beijing, China

Paper No. GT2014-25300, pp. V05CT16A005; 14 pages
doi:10.1115/GT2014-25300
From:
  • ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
  • Volume 5C: Heat Transfer
  • Düsseldorf, Germany, June 16–20, 2014
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4573-8
  • Copyright © 2014 by ASME

abstract

Effects of pressure ratio, rotational speed and inlet preswirl on the leakage and rotordynamic characteristics of a eight-bladed fully-partitioned pocket damper seal (FPDS) were numerically investigated using proposed 3D transient CFD methods based on the multi-frequency elliptical whirling orbit model. The accuracy and availability of the multi-frequency elliptical whirling orbit model and the transient CFD numerical methods were demonstrated with the experimental data of frequency-dependent rotordynamic coefficients of the FPDS at two rotational speeds with high preswirl conditions. The frequency-dependent rotordynamic coefficients of the FPDS at three pressure ratios (three inlet pressures and three outlet pressures), three rotational speeds, three inlet preswirls were computed. The numerical results show that changes in outlet pressure have only weak effects on most rotordynamic coefficients. The direct damping and effective damping slightly increase in magnitude with decreasing outlet pressure at the frequency range of 20–200Hz. The effect of inlet pressure is most prominent, and increasing inlet pressure for the FPDS results in a significant increase in the magnitudes of all rotordynamic coefficients. The magnitudes of the seal response force and effective damping are proportional to pressure drop through the seal. Increasing rotational speed and increasing inlet preswirl velocity both result in a significant decrease in the effective damping term due to the obvious increase in the magnitude of the destabilizing cross-coupling stiffness with increasing rotational speed or increasing preswirl velocity. The crossover frequency of effective damping significantly increases and the peak magnitude of effective damping decreases with increasing rotational speed or increasing preswirl velocity. The destabilizing cross-coupling stiffness is mainly caused by the circumferential swirl velocity generating from high rotational speed and inlet preswirl. Reducing swirl velocity (such as swirl brake) can greatly enhance the stabilizing capacity of the FPDS.

Copyright © 2014 by ASME
Topics: Pressure , Dampers , Leakage

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In