0

Full Content is available to subscribers

Subscribe/Learn More  >

Use of Pressure Measurements to Determine Effectiveness of Turbine Rim Seals

[+] Author Affiliations
J. Michael Owen, James A. Scobie, Carl M. Sangan, GeonHwan Cho, Gary D. Lock

University of Bath, Bath, UK

Kang Wu

Tsinghua University, Beijing, China

Paper No. GT2014-25200, pp. V05CT16A004; 11 pages
doi:10.1115/GT2014-25200
From:
  • ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
  • Volume 5C: Heat Transfer
  • Düsseldorf, Germany, June 16–20, 2014
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4573-8
  • Copyright © 2014 by ASME

abstract

The ingress of hot gas through the rim seal of a gas turbine depends on the pressure difference between the mainstream flow in the turbine annulus and that in the wheel-space radially inward of the rim seal. In this paper, a previously published orifice model is modified so that the sealing effectiveness εc determined from concentration measurements in a rig could be used to determine εp the effectiveness determined from pressure measurements in an engine. It is assumed that there is a hypothetical ‘sweet spot’ on the vane platform where the measured pressures would ensure that the calculated value of εp equals εc, the value determined from concentration measurements. Experimental measurements for a radial-clearance seal show that, as predicted, the hypothetical pressure difference at the sweet spot is linearly related to the pressure difference measured at an arbitrary location on the vane platform. There is good agreement between the values of εp determined using the theoretical model and values of εc determined from concentration measurements. Supporting computations, using a 3D steady CFD code, show that the axial location of the sweet spot is very close to the upstream edge of the seal clearance. It is shown how parameters obtained from measurements of pressure and concentration in a rig could, in principle, be used to calculate the sealing effectiveness in an engine.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In