0

Full Content is available to subscribers

Subscribe/Learn More  >

The Effect of Aircraft Integration Design on Gas Turbine Shaft Thermal Bow and the Newkirk Effect

[+] Author Affiliations
Evan Oscar Smith

Royal Australian Air ForceUniversity of New South Wales, Canberra, ACT, Australia

Andrew J. Neely

University of New South Wales, Canberra, ACT, Australia

Paper No. GT2014-25511, pp. V05AT11A009; 12 pages
doi:10.1115/GT2014-25511
From:
  • ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
  • Volume 5A: Heat Transfer
  • Düsseldorf, Germany, June 16–20, 2014
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4571-4
  • Copyright © 2014 by ASME

abstract

During the cooling process after shutdown, gas turbines can suffer from differential thermal expansion due to buoyant convection. This process can result in asymmetric cooling of the shaft, which can in turn lead to differential thermal expansion, causing deformation of the shaft, known as thermal bow. Attempts to start a gas turbine in this bowed condition can lead to rotor-to-stator contact, triggering further heating, and subsequently further bow. This phenomenon, known as the Newkirk Effect, can result in severe damage to the engine, representing a risk to both airworthiness and logistics.

This study utilises a technique previously developed by the authors for modelling shaft thermal bow in gas turbines using a combination of 3D conjugate heat transfer (CHT) computational fluid dynamics (CFD) and finite element analysis (FEA). A baseline model comprises a simple hollow shaft supported at each end, enveloped inside a simple case. Body temperatures obtained through 3D CHT CFD at set time intervals are transferred to FEA, where the physical distortion associated with the application of an asymmetric thermal load is measured. The baseline model was allowed to cool down from representative operational temperatures, with the shaft thermal bow measured for 90 minutes of flow time. Simple modifications were then made to the baseline model including the addition of representative helicopter and fast jet inlet and exhaust analogues, and the use of porosity to simulate the presence of blades, to analyse their influence on the onset time, duration, and severity of the shaft deformation.

While the geometries used in this initial study are basic, the results indicate that these aspects of gas turbine design do have an appreciable effect on the onset time, severity, and duration, as well as the axial distribution of the shaft thermal bow. This also indicates the importance of further work in this area using more realistic geometries.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In