0

Full Content is available to subscribers

Subscribe/Learn More  >

Laminar Flamelet Based NOx Predictions for Gas Turbine Combustors

[+] Author Affiliations
Mohan Sripathi, Sundar Krishnaswami

GE Aviation, Bangalore, India

Allen M. Danis, Shih-Yang Hsieh

GE Aviation, Cincinnati, OH

Paper No. GT2014-27258, pp. V04BT04A060; 9 pages
doi:10.1115/GT2014-27258
From:
  • ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
  • Volume 4B: Combustion, Fuels and Emissions
  • Düsseldorf, Germany, June 16–20, 2014
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4569-1
  • Copyright © 2014 by ASME

abstract

Stringent emissions regulations have led engine manufacturers to focus on fuel-efficient low emission technologies. Basic understanding and modeling of fundamental mechanisms governing formation and destruction of NOx, CO and UHC is essential to reduce pollutant emissions. Recent advances in turbulent combustion modeling have enabled designers to use CFD as a design tool for evaluating low emission concepts at the conceptual design phase.

Prediction of pollutant NOx for gas turbine combustors has proven successful for design validation applications. The challenge is to provide quick and accurate estimates of NOx for application to gas turbine combustor preliminary design phase, which can be characterized by multiple design changes, varying operating conditions and a variety of fuel staging concepts. NOx formation processes are typically slow compared to the fast hydrocarbon oxidation reactions. As a result, NOx predictions are typically performed as a post-processing step on thermal field obtained from reacting flow simulations. This work builds on prior work on flamelet approach [1,3] by suitably blending it with FLUENT®’s species transport. NOx production within gas turbine combustors has contributions from two major sources: flame front & post-flame thermal NO. The flame front contributions are obtained from flamelet based computations involving detailed chemistry whereas the slow evolution of post-flame NOx is tracked by explicitly solving for NO species transport. The closure of turbulence-chemistry-interactions is derived from Girimaji’s [2] assumed PDF closure using temperature-composition correlations. A Gaussian PDF shape is used with mean and variance of temperatures accounting for the first and second moments, required for PDF weighting computations. The formulation has been validated against SANDIA D flame, and then extended to GE Aviation’s fielded combustors over a wide range of operating conditions, with errors within 11% at Take-Off condition. The model has also been used for pre-test predictions on a number of combustors under development.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In