Full Content is available to subscribers

Subscribe/Learn More  >

Multi-Coupled Numerical Analysis of Advanced Lean Burn Injection Systems

[+] Author Affiliations
Antonio Andreini, Cosimo Bianchini, Gianluca Caciolli, Bruno Facchini, Andrea Giusti

University of Florence, Florence, Italy

Fabio Turrini

AvioAero, Rivalta di Torino, TO, Italy

Paper No. GT2014-26808, pp. V04BT04A041; 15 pages
  • ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
  • Volume 4B: Combustion, Fuels and Emissions
  • Düsseldorf, Germany, June 16–20, 2014
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4569-1
  • Copyright © 2014 by ASME


Lean burn aero-engine combustors usually exploit advanced prefilming airblast injection systems in order to promote the formation of highly homogeneous air-fuel mixtures with the main aim of reducing NOx emissions. The combustion process is strongly influenced by the liquid fuel preparation and a reliable prediction of pollutant emissions requires proper tools able to consider the most important aspects characterizing liquid film evolution and primary breakup. This paper presents the numerical analysis of an advanced lean burn injection system using a multi-coupled two-phase flow three-dimensional solver developed on the basis of OpenFOAM modelling and numerics. The solver allows the coupled solution of gas-phase, droplets and liquid film exploiting correlation-based and theoretical models for liquid film primary atomization. A detailed analysis of the liquid film evolution is presented together with an investigation of the influence of film modelling and primary breakup on the combustion process at different operating conditions. The combustion field is strongly influenced by the characteristics of droplet population generated by the liquid film and this study proposes a computational setup, suitable for industrial calculations, able to account for all the main physical processes that characterize advanced prefilming airblast injection systems.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In