0

Full Content is available to subscribers

Subscribe/Learn More  >

Turbulent Combustion Modeling Using Flamelet-Generated Manifolds for Gas Turbine Applications in OpenFOAM

[+] Author Affiliations
A. Fancello, R. J. M. Bastiaans, L. P. H. de Goey

Eindhoven University of Technology, Eindhoven, The Netherlands

L. Panek

Siemens AG, Berlin, Germany

O. Lammel

DLR - German Aerospace Center, Stuttgart, Germany

W. Krebs

Siemens AG, Muelheim a. d. Ruhr, Germany

Paper No. GT2014-26096, pp. V04BT04A012; 9 pages
doi:10.1115/GT2014-26096
From:
  • ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
  • Volume 4B: Combustion, Fuels and Emissions
  • Düsseldorf, Germany, June 16–20, 2014
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4569-1
  • Copyright © 2014 by ASME

abstract

The continuous interest in reducing pollutions and developing both an efficient and clean combustion system require large attention in the design requirements, especially when related to industrial gas turbine application. Although in recent years the advancements in modelling have increased dramatically, combustion still needs a huge computational effort. The Flamelet-Generated Manifolds (FGM) method is considered a suitable solution with an accuracy that can be comparable with detailed chemistry simulations results. The full combustion system can be described by few controlling variables while the chemical details are stored in a database (manifold) as function of controlling variables. Transport equations are solved for the Navier-Stokes system and the controlling variables. The detailed chemistry code Chem1D is used to create the manifolds. Turbulence can be modeled using a PDF approach for the subgrid modeling of the chemistry terms. The OpenFOAM open source CFD package is used as CFD tool for the simulations. The aim of this work is to demonstrate the usage of FGM with OpenFOAM and figure out the status of the implementation. To achieve this goal, the work employs as test case a confined lean jet flame is used. For the case presented, an extensive experimental data set exist, including PIV and Raman data. Results are further compared with traditional methods, while FGM method might be easily extended to other scenarios.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In