Full Content is available to subscribers

Subscribe/Learn More  >

Large Eddy Simulation of ALSTOM’s Reheat Combustor Using Tabulated Chemistry and Stochastic Fields-Combustion Model

[+] Author Affiliations
Rohit Kulkarni, Birute Bunkute, Fernando Biagioli, Michael Duesing

Alstom Power, Baden, Baden, Switzerland

Wolfgang Polifke

TU München, Garching, Germany

Paper No. GT2014-26053, pp. V04BT04A008; 9 pages
  • ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
  • Volume 4B: Combustion, Fuels and Emissions
  • Düsseldorf, Germany, June 16–20, 2014
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4569-1
  • Copyright © 2014 by Alstom Technologie AG


Large Eddy Simulations (LES) of natural gas ignition and combustion in turbulent flows are performed using a novel combustion model based on a composite progress variable, a tabulated chemistry ansatz and the stochastic-fields turbulence-chemistry interaction model. It is a significant advantage of this approach that it can be applied to industrial configurations with multi-stream mixing at relatively low computational cost and modeling complexity. The computational cost is independent of the chemical mechanism or the type of fuel, but increases linearly with the number of streams. The model is validated successfully against the Cabra methane flame and Delft Jet in Hot Coflow (DJFC) flame. Both cases constitute fuel jets in a vitiated coflow. The DJFC flame coflow has a non-uniform mixture of air and hot gases. The model considers this non-uniformity by an additional mixture fraction dimension, emulating a ternary mixing case. The model not only predicts flame location, but also the temperature distribution quantitatively. The LES combustion model is further extended to consider four stream mixing. It has been successfully validated for ALSTOM’s reheat combustor at atmospheric conditions. Compared to the past steady-state RANS (Reynolds Averaged Navier-Stokes) simulations [1], the LES simulations provide an even better understanding of the turbulent flame characteristics, which helps in the burner optimization.

Copyright © 2014 by Alstom Technologie AG



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In