Full Content is available to subscribers

Subscribe/Learn More  >

Intermittency in the Dynamics of Turbulent Combustors

[+] Author Affiliations
Vineeth Nair, R. I. Sujith

Indian Institute of Technology Madras, Chennai, India

Paper No. GT2014-26018, pp. V04BT04A004; 9 pages
  • ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
  • Volume 4B: Combustion, Fuels and Emissions
  • Düsseldorf, Germany, June 16–20, 2014
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4569-1
  • Copyright © 2014 by ASME


The dynamic transitions preceding combustion instability and lean blowout were investigated experimentally in a laboratory scale turbulent combustor by systematically varying the flow Reynolds number. We observe that the onset of combustion-driven oscillations is always presaged by intermittent bursts of high-amplitude periodic oscillations that appear in a near random fashion amidst regions of aperiodic, low-amplitude fluctuations. The onset of high-amplitude, combustion-driven oscillations in turbulent combustors thus corresponds to a transition in dynamics from chaos to limit cycle oscillations through a state characterized as intermittency in dynamical systems theory. These excursions to periodic oscillations become last longer in time as operating conditions approach instability and finally the system transitions completely into periodic oscillations. Such intermittent oscillations emerge through the establishment of homoclinic orbits in the phase space of the global system which is composed of hydrodynamic and acoustic subsystems that operate over different time scales. Such intermittent burst oscillations are also observed in the combustor on increasing the Reynolds number further past conditions of combustion instability towards the lean blowout limit. High-speed flame images reveal that the intermittent states observed prior to lean blowout correspond to aperiodic detachment of the flame from the bluff-body lip. These intermittent oscillations are thus of prognostic value and can be utilized to provide early warning signals to combustion instability as well as lean blowout.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In