0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Study of Unsteady Flow-Field and Flame Dynamics in a Gas Turbine Model Combustor

[+] Author Affiliations
Moresh J. Wankhede, Ferry A. Tap, Philipp Schapotschnikow, Wilhelmus J. S. Ramaekers

Dacolt International B.V., Maastricht, The Netherlands

Paper No. GT2014-25784, pp. V04AT04A050; 12 pages
doi:10.1115/GT2014-25784
From:
  • ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
  • Volume 4A: Combustion, Fuels and Emissions
  • Düsseldorf, Germany, June 16–20, 2014
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4568-4
  • Copyright © 2014 by ASME

abstract

In swirl-stabilized gas turbine combustors, interaction between unsteady flow-field and flame dynamics play a key role in driving several types of combustion instabilities, establishing flame location and its structure and influencing heat release rates. This is challenging to understand and computationally expensive to resolve in detail. In this study, a highly turbulent and swirling flow-flame dynamics in a gas turbine model combustor is characterized numerically using unsteady Reynolds-averaged Navier Stokes (URANS) and detached eddy simulation (DES) based computational fluid dynamics (CFD) methods. From flame representation point of view, the Flamelet Generated Manifold (FGM) method is used to reduce combustion chemistry (which still includes detailed reaction kinetics and species diffusion in reaction layers) and hence computational requirements. The helical precessing vortex core (PVC) instability and its influence on downstream flow/flame dynamics is captured. Further insight is gained into URANS and DES methods capabilities in simulating various coherent swirl flow structures such as central toroidal recirculation zone (CTRZ) and outer recirculation zones (ORZ) as well as fuel-air mixing patterns. NOx emission, which is currently a high-priority design objective due to stringent pollutant regulations, is also computed. The results show that the numerically captured swirling flow-flame dynamics is in accordance with the experimental observations and measurements.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In