0

Full Content is available to subscribers

Subscribe/Learn More  >

Runge-Kutta/Implicit Scheme for the Solution of Time Spectral Method

[+] Author Affiliations
Can Ma, Xinrong Su, Jinlan Gou, Xin Yuan

Tsinghua University, Beijing, China

Paper No. GT2014-26474, pp. V02DT44A026; 13 pages
doi:10.1115/GT2014-26474
From:
  • ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
  • Volume 2D: Turbomachinery
  • Düsseldorf, Germany, June 16–20, 2014
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4563-9
  • Copyright © 2014 by ASME

abstract

This paper investigates the Runge-Kutta implicit scheme applied to the solution of the time spectral method for periodic unsteady flow simulation. Several explicit and implicit time integration schemes including the Runge-Kutta scheme, Block-Jacobi SSOR (symmetric successive over relaxation)scheme and Block-Jacobi Runge-Kutta/Implicit scheme are implemented into an in-house code and applied to the time marching solution of the time spectral method. The time integration is coupled with Full Approximation Storage (FAS) type multi-grid method for convergence acceleration. The in-house code is based on the finite volume method and solves the RANS (Reynolds Averaged Navier-Stokes) equations on multi-block structured mesh. For spatial discretization the 3rd/5th order WENO (weighted essentially nonoscillatory) upwind scheme is used for reconstruction and the convective flux is computed with Roe approximate Riemann solver. The widely used one-equation Spalart-Allmaras turbulence model is used in the simulations. The time integration schemes for the solution of the time spectral method are tested with two different compressor cascades with periodically oscillating inlet boundary conditions. The first case is a low speed compressor stator with inlet flow angle varying with time. The second case is a high speed compressor rotor with inlet boundary condition profile to simulation the influence of upstream wakes. The results show that for moderate frequencies and wave mode numbers, the Block-Jacobi Runge-Kutta/Implicit scheme shows favorable convergence behavior compared to the other schemes. However, for extremely high frequencies and wave mode numbers such as in the simulation of high rotating speed compressors, the advantage of the Block-Jacobi Runge-Kutta/Implicit scheme over the explicit Runge-Kutta scheme is totally lost.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In