0

Full Content is available to subscribers

Subscribe/Learn More  >

Off-Design Performance of a Highly Loaded LP Turbine Cascade Under Steady and Unsteady Incoming Flow Conditions

[+] Author Affiliations
Marco Berrino, Daniele Simoni, Marina Ubaldi, Pietro Zunino

Università di Genova, Genova, Italy

Francesco Bertini

AvioAero R&D, Rivalta, TO, Italy

Paper No. GT2014-25396, pp. V02DT44A005; 11 pages
doi:10.1115/GT2014-25396
From:
  • ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
  • Volume 2D: Turbomachinery
  • Düsseldorf, Germany, June 16–20, 2014
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4563-9
  • Copyright © 2014 by ASME

abstract

The off-design performance of a highly loaded LP turbine cascade has been experimentally investigated, at the Aerodynamics and Turbomachinery Laboratory of Genova University, under steady and unsteady incoming flow conditions. Tests have been performed for different Reynolds numbers (Re = 70000 and Re = 300000), in order to cover the typical LP turbine working range. The incidence angle has been varied between i = −9° and +9°, in order to test off-design conditions characterizing the engine. For the unsteady case upstream wake periodic perturbations have been generated by means of a tangential wheel of radial rods. The cascade and the moving bars system have been located over a common bearing in order to make them rigidly rotating. This solution allows a proper comparison of the cascade robustness at the incidence angle variation under steady and unsteady incoming flows, since all the other operating parameters have been kept the same. In order to survey the variation of the unsteady boundary conditions characterizing the off-design operation of the downstream cascade, time-mean and time-resolved wake structures have been analyzed in detail.

For what concerns the cascade performance, profile aerodynamic loadings and total pressure loss coefficients at the cascade exit have been surveyed for the different incidence angles under both steady and unsteady inflows. Different total pressure loss sensitivity at the incidence angle variation has been observed for the steady and the unsteady inflow conditions.

Hot-wire anemometer has been employed to obtain the time-mean pressure and suction side boundary layer velocity profiles at the blade trailing edge for the different conditions. The integral parameters at the cascade exit plane help to justify the different loss trend vs incidence angle found for the steady and the unsteady cases, explaining the different sensibility of the blade profile when this operates under realistic unsteady inflow condition.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In