0

Full Content is available to subscribers

Subscribe/Learn More  >

An Accelerated Medial Object Transformation for Whole Engine Optimisation

[+] Author Affiliations
Leran Wang, David J. J. Toal, Andy J. Keane

University of Southampton, Southampton, UK

Felix Stanley

Rolls-Royce plc., Derby, UK

Paper No. GT2014-26014, pp. V02BT45A011; 8 pages
doi:10.1115/GT2014-26014
From:
  • ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
  • Volume 2B: Turbomachinery
  • Düsseldorf, Germany, June 16–20, 2014
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4561-5
  • Copyright © 2014 by ASME

abstract

The following paper proposes an accelerated medial object transformation for the tip clearance optimisation of whole engine assemblies. A considerable reduction in medial object generation time has been achieved through two different mechanisms. Faces leading to unnecessary branches in the medial mesh are removed from the model and parallelisation of the medial object generation is improved through the subdivision of the original 3D CAD model. The time savings offered by these schemes are presented with respect to the generation of the medial objects of two complex gas turbine engine components. It is also demonstrated that the utilization of these techniques within a design optimisation may result in a considerable reduction in wall time.

Copyright © 2014 by ASME
Topics: Engines , Optimization

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In