0

Full Content is available to subscribers

Subscribe/Learn More  >

Efficient Uncertainty Quantification of Centrifugal Compressor Performance Using Polynomial Chaos

[+] Author Affiliations
Andrea Panizza, Dante Tommaso Rubino, Libero Tapinassi

GE Oil & Gas, Florence, Italy

Paper No. GT2014-25081, pp. V02BT45A001; 14 pages
doi:10.1115/GT2014-25081
From:
  • ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
  • Volume 2B: Turbomachinery
  • Düsseldorf, Germany, June 16–20, 2014
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4561-5
  • Copyright © 2014 by ASME

abstract

This paper presents a fully automated procedure to estimate the uncertainty of compressor stage performance, due to impeller manufacturing variability. The methodology was originally developed for 2D stages, i.e., stages for which the impeller blade angle and thickness distribution are only defined at the hub end-wall. Here, we extend the procedure to general 3D stages, for which blade angle and thickness distributions can be prescribed independently at the shroud and hub endwalls. Starting from the probability distribution of the impeller geometrical parameters, 3D sample geometries are generated and 1D/2D aerodynamic models are created, which are used to predict the performance of each sample geometry. The original procedure used the Monte Carlo method to propagate uncertainty. However, this requires a large number of samples to compute accurate performance statistics. Here we compare the results from Monte Carlo, with those obtained using Sparse Grid Polynomial Chaos Expansion (PCE) and a Multidimensional Cubature Rule for uncertainty propagation. PCE has exponential convergence in the stochastic space for smooth functions, and the use of sparse grids mitigates the increase of sample points due to the increase in the number of uncertain parameters. The cubature rule has accuracy limitations, but sample points increase only linearly with the number of parameters. For a 3D stage, the probability distributions of the performance characteristics are computed, as well as the sensitivity to the design parameters. The results show that PCE and Multidimensional Cubature give similar results to MC computations, with a much lower computational effort.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In