Full Content is available to subscribers

Subscribe/Learn More  >

Film Cooling Hole Shape Optimization Using Proper Orthogonal Decomposition

[+] Author Affiliations
Kozo Nita, Yoji Okita, Chiyuki Nakamata

IHI Corporation, Tokyo, Japan

Seiji Kubo, Kazuo Yonekura, Osamu Watanabe

IHI Corporation, Yokohama, Kanagawa, Japan

Paper No. GT2014-27239, pp. V02BT39A046; 12 pages
  • ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
  • Volume 2B: Turbomachinery
  • Düsseldorf, Germany, June 16–20, 2014
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4561-5
  • Copyright © 2014 by ASME


Film cooling is a very effective cooling method for protecting the turbine blades exposed to hot gas from the heat. Since its cooling effectiveness is highly dependent on the shape of the hole, a wide variety of concepts and design parameters regarding hole shapes have been researched. However, there are no well-defined ways to determine the optimum shape of a film cooling hole.

The CFD is a powerful tool for film cooling hole optimization. But with the number of parameters that define the film cooling hole shapes being so numerous, analytical optimization with CFD often requires computational resources that are unrealistic for the average design environment. Accordingly, for CFD to be effective in the optimization process, it is necessary to reduce the number of computations or shorten the calculation time per computation.

In order to solve this problem, this paper presents a novel approach of applying 3D-POD (3D-Proper Orthogonal Decomposition) to the optimization of film cooling holes. POD is one of the most important component analysis methods and has the potential to reduce the number of parameters.

From the computation results, a solution group was made by the RSM (Response Surface Method) and assessment functions, i.e., film cooling effectiveness, heat transfer coefficient, mixing loss, concentration of stress and robustness were considered first. In the end, however, considering the sensitivity of each objective function, the optimal hole shapes were obtained with only the film effectiveness being evaluated.

In the following sections, this method and its results are described in detail.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In