0

Full Content is available to subscribers

Subscribe/Learn More  >

Predictive Capability of CFD Models for Transonic Compressor Design

[+] Author Affiliations
Lars Ellbrant, Lars-Erik Eriksson

Chalmers University of Technology, Gothenburg, Sweden

Hans Mårtensson

GKN Aerospace Engine Systems, Trollhättan, Sweden

Paper No. GT2014-27019, pp. V02BT39A041; 13 pages
doi:10.1115/GT2014-27019
From:
  • ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
  • Volume 2B: Turbomachinery
  • Düsseldorf, Germany, June 16–20, 2014
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4561-5
  • Copyright © 2014 by ASME

abstract

The primary focus of this work is to validate a CFD model intended to be used for transonic compressor design purposes. This design model includes a coarse grid using wall functions and mixing planes at interfaces connecting the compressor components. The computations are compared with experimental data from the transonic highly loaded 1.5 stage compressor test case Hulda. Additional comparisons are done with higher complexity CFD models accounting for the rotor-stator interaction. The performance of Hulda has been measured with both a small and a large tip clearance. These two configurations are used to investigate the necessity of resolving the tip clearance gap in the design model. The comparison is presented in terms of the overall performance at two rotational speeds as well as radial distribution of total pressure and total temperature at stations downstream of the rotor. The predictive capability at these speeds is assessed in terms of mass flow, pressure ratio and efficiency. Furthermore, the response of the predicted radial flow distributions with respect to the throttle setting along the two rotational speeds is qualitatively compared with the measurements.

The validation of the small tip clearance test shows that the design model, with or without tip gap modeling, is in good agreement with the measurements at both speeds. As for the large tip clearance test a design model resolving the tip clearance was able to predict trends but the penalty related to the increased tip gap was overestimated compared to the measured.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In