0

Full Content is available to subscribers

Subscribe/Learn More  >

An Adjoint-Based Optimization Method for Constrained Aerodynamic Shape Design of Three-Dimensional Blades in Multi-Row Turbomachinery Configurations

[+] Author Affiliations
Benjamin Walther, Siva Nadarajah

McGill University, Montreal, QC, Canada

Paper No. GT2014-26604, pp. V02BT39A031; 16 pages
doi:10.1115/GT2014-26604
From:
  • ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
  • Volume 2B: Turbomachinery
  • Düsseldorf, Germany, June 16–20, 2014
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4561-5
  • Copyright © 2014 by ASME

abstract

This paper develops the discrete adjoint equations for a turbomachinery RANS solver and proposes a framework for fully-automatic gradient-based constrained aerodynamic shape optimization in a multistage turbomachinery environment. The systematic approach for the development of the discrete adjoint solver is discussed. Special emphasis is put on the development of the turbomachinery specific features of the adjoint solver, i.e. on the derivation of flow-consistent adjoint inlet/outlet boundary conditions and, to allow for a concurrent rotor/stator optimization and stage coupling, on the development of an exact adjoint counterpart to the non-reflective, conservative mixing-plane formulation used in the flow solver. The adjoint solver is validated by comparing its sensitivities with finite difference gradients obtained from the flow solver. A sequential quadratic programming algorithm is utilized to determine an improved blade shape based on the objective function gradient provided by the adjoint solution. The functionality of the proposed optimization method is demonstrated by the redesign of a single-stage transonic compressor. The objective is to maximize the isentropic efficiency while constraining the mass flow rate and the total pressure ratio.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In