Full Content is available to subscribers

Subscribe/Learn More  >

An Aggressive S-Shaped Compressor Transition Duct With Swirling Flow and Aerodynamic Lifting Struts

[+] Author Affiliations
A. D. Walker, A. G. Barker, I. Mariah, G. L. Peacock, J. F. Carrotte

Loughborough University, Loughborough, Leicestershire, UK

R. M. Northall

Rolls-Royce plc, Derby, Derbyshire, UK

Paper No. GT2014-25844, pp. V02AT40A002; 12 pages
  • ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
  • Volume 2A: Turbomachinery
  • Düsseldorf, Germany, June 16–20, 2014
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4560-8
  • Copyright © 2014 by Rolls-Royce plc


In a multistage intermediate pressure compressor an efficiency benefit may be gained by reducing reaction in the rear stages, and allowing swirl to persist at the exit. This swirl must now be removed within the transition duct that is situated between the intermediate and high pressure compressor spools, in order to present the downstream compressor with suitable inlet conditions. This paper presents the numerical design and experimental validation of an initial concept which uses a lifting strut to remove tangential momentum from the flow within an S-shaped compressor transition duct. The design methodology uses an existing strut profile with the camber line modified to remove a specified amount of the inlet tangential momentum. A linear strut loading was employed in the meridional direction with a nominally constant loading in the radial direction. This approach was applied to an existing aggressive S-duct configuration in which approximately 12.5° of swirl remains at OGV exit. 3D CFD predictions were used for preliminary assessment of duct loading and to determine how much swirl could be removed. Consequently, a fully annular test facility incorporating a 1½ stage axial compressor was used to experimentally evaluate four configurations; an unstrutted duct, a non-lifting strut and lifting struts designed to remove 50% and 75% of the inlet tangential momentum. Despite the expected large increase in loss caused by the introduction of struts there was not a significant additional loss measured with the inclusion of turning. No evidence of flow separation was observed and the data suggested that it may be possible to remove more swirl than was attempted. Although the turning struts did not remove the entire targeted swirl due to viscous deviation the data still confirm the feasibility of using a lifting strut/duct concept which has the potential to off-load the rear stages of the upstream compressor.

Copyright © 2014 by Rolls-Royce plc



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In