Full Content is available to subscribers

Subscribe/Learn More  >

Missile Probability Analysis of Welding Nuclear Turbine Rotor

[+] Author Affiliations
Rong Chen, Wen Xiang Hua, Yan Lei Yang, Xiao Zhong He

Shanghai Electric Power Generation Co., Ltd., Shanghai, China

Paper No. GT2014-26723, pp. V01BT27A042; 6 pages
  • ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
  • Volume 1B: Marine; Microturbines, Turbochargers and Small Turbomachines; Steam Turbines
  • Düsseldorf, Germany, June 16–20, 2014
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4558-5
  • Copyright © 2014 by ASME


In this paper, a 1000MW nuclear turbine LP welded rotor was analyzed to assure the missile safety of the turbine, which is required by the Nuclear Regulatory Commission (NRC). Finite element analysis method was used to estimate the stress level of the rotor. Stress corrosion cracking (SCC) was considered as the main reason of the rotor failure. The probabilistic method was used to assess the missile safety of the turbine rotor. The high speed turbine rotor is one of the key components of the turbine-generator system which was related closely to the safety and economy of the Power Plant’s operation. In this paper the rotor design & analysis process for the Shanghai Turbine Plant’s nuclear 1000MW power station is described. The operation of the turbine rotors of the nuclear power plant suffered from the severe stresses because of high temperature and high speed during start-up, shutdown and load changes. The moisture steam environment due to the low nuclear steam temperature also increase the probability of the fatigue failure of the turbine rotor. The integrity of the turbine rotor was threatened by the material deterioration caused by fatigue and moisture corrosion of the rotor at some critical locations. The fatigue mechanisms of the turbine rotor are described. Key factors that influence missile probability are discussed. Rotor damage due to SCC is discussed and analyzed to evaluate the probability of the nuclear turbine rotor.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In