0

Full Content is available to subscribers

Subscribe/Learn More  >

Study of Erosion Characteristics of Solid Particles in the First Reheat Stage Blades of a Supercritical Steam Turbine

[+] Author Affiliations
Liu-xi Cai, Shun-sen Wang, Juan Di, Jing-ru Mao, Zhen-ping Feng

Xi’an Jiaotong University, Xi’an, China

Jun-jie Zhang, Ya-tao Xu

Shenhua Guohua (Beijing) Electric Power Research Institute Co. Ltd, Beijing, China

Paper No. GT2014-26674, pp. V01BT27A040; 13 pages
doi:10.1115/GT2014-26674
From:
  • ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
  • Volume 1B: Marine; Microturbines, Turbochargers and Small Turbomachines; Steam Turbines
  • Düsseldorf, Germany, June 16–20, 2014
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4558-5
  • Copyright © 2014 by ASME

abstract

Reducing solid particle erosion (SPE) of blades is one of the most urgent problems for supercritical steam turbine power generation technology. Based on the erosion rate models and the particle rebound models of blade materials obtained through the accelerated erosion test under high temperature, erosion characteristics of the first reheat stage blades in a supercritical steam turbine was simulated and analyzed by three-dimension numerical simulation method in this paper. The influence of operating conditions, particle size distribution in the inlet of nozzle and axial clearance between vanes and rotating blades on the erosion distribution of cascade were explored quantitatively. Results show that: the erosion damage of the first-reheat stage stator is mainly caused by suction surface impingement from oxide particles. In designed loading condition, small and median size of particles mainly eroded the trailing edge (TE) of nozzle pressure surface, while large particles mainly impinge the leading edge (LE) of rotating blades and the TE of vane suction surface, and erosion increase along the blade height. When the turbine is running under part-load condition, particle impingement angle on stator pressure surface is basically unchanged, while impingement velocity slightly reduced. However, the amount of particles that impinge the stator TE suction side after their first-time impingement on rotor LE increase rapidly, leading to the more severe erosion damage of stator suction surface. The particle size distribution in the inlet of nozzle has a significant effect on the erosion simulation of first reheat stage blades, and the size distribution sampled in one unit may not be used to other units. When axial clearance changes, the erosion weight loss of vane pressure surface near TE is basically held constant, while the erosion weight loss in vane suction surface near TE decreases with the increase of axial clearance. For the supercritical 600MW unit simulated in this article, the anti-SPE performance and the unit efficiency can be balanced well when the axial clearance increases to 13mm. The results in this paper will provide a technology basis for reducing oxide particle erosion in the first reheat stage blades of supercritical steam turbine.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In