0

Full Content is available to subscribers

Subscribe/Learn More  >

Development of Steam Chest With Valve for Steam Extraction in Cogeneration

[+] Author Affiliations
Zhenzhen Hao, Puning Jiang, Xingzhu Ye, Gang Chen, Yifeng Hu, Junhui Zhang

Shanghai Electric Power Generation Equipment CO., LTD., Shanghai, China

Paper No. GT2014-26080, pp. V01BT27A030; 9 pages
doi:10.1115/GT2014-26080
From:
  • ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
  • Volume 1B: Marine; Microturbines, Turbochargers and Small Turbomachines; Steam Turbines
  • Düsseldorf, Germany, June 16–20, 2014
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4558-5
  • Copyright © 2014 by ASME

abstract

Cogeneration has been identified as a key technical solution to improve environment, by reducing the impact of global climate change and reducing local emissions, such as particulates, sulphur and nitrogen oxides. In cogeneration, a certain pressure of steam has to be extracted from steam turbine. A mechanical device shall be used to maintain the pressure of the extracted steam. In this paper a new steam chest with valve used for cogeneration which is installed in the steam flow is introduced. Different amount of steam extractions need different valve openings. In order to obtain these several valve openings in typical operating conditions, CFD-program is used to simulate the flow path in the steam chest. The pressure distribution on the surface of valve disc can be calculated through CFD method, and corresponding steady aerodynamic forces and torques can be calculated by integral. Pulsatile flow will change the forces and moments acting on the valve discs with time constantly. Frequency spectrograms of the aerodynamic forces are obtained by using the fast Fourier transforms and compared to the characteristic frequencies of the valve disc obtained by mode analysis.

For the purpose of validating the accuracy of CFD model, a test with test model scale of 1:5 has been designed. In the test, the pressure distribution on the valve disc surface and the flow field in the steam chest are acquired respectively by the method PSP (Pressure-Sensitive Paint) and PIV (Particle Image Velocimetry). CFD calculations and experimental results have been compared and it is shown that CFD calculations using K-ε turbulence model has satisfactory precision to calculate the pressure distribution, flow field and the torques.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In