0

Full Content is available to subscribers

Subscribe/Learn More  >

Sensitivity Analysis of Condensation Model Constants on Calculated Liquid Film Motion in Radial Turbines

[+] Author Affiliations
Sebastian Schuster, Friedrich-Karl Benra, Hans Josef Dohmen

University of Duisburg-Essen, Duisburg, Germany

Sven König, Uwe Martens

Siemens Energy Sector, Duisburg, Germany

Paper No. GT2014-25652, pp. V01BT27A021; 12 pages
doi:10.1115/GT2014-25652
From:
  • ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
  • Volume 1B: Marine; Microturbines, Turbochargers and Small Turbomachines; Steam Turbines
  • Düsseldorf, Germany, June 16–20, 2014
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4558-5
  • Copyright © 2014 by Siemens AG

abstract

In many technical processes, a mixture of gas and steam is used as the working fluid in radial turbines. When condensation occurs during expansion, a portion of the liquid droplets can hit the rotor blades and form a water film, which can move in a radial direction and even against the flow direction. Then, the liquid film separates in the rotor tip clearance or at the leading edge of the rotor and forms coarse water droplets. The presence of coarse water droplets in the gap between stator and rotor can cause damage to the turbine rotor. To design a radial turbine which works under condensation conditions, it is essential to know where and when condensation and film formation occur. With this information, it is possible to take action to remove the liquid or to adjust the required maintenance intervals. To examine the details of condensation and film motion, an existing flow solver is extended to capture condensation effects. Models describing nucleation and droplet growth are added to a particle-tracking algorithm. Droplets impinging on the rotor blades form a liquid film. The motion of this liquid film is calculated with a newly developed thin film solver. The calculation tool is validated against third party test rig experiments as well as numerical experiments. For many parameters, the agreement between the calculation tool and the experiments is quite satisfactory. Some results, however, show larger deviations. One of these parameters is the droplet diameter. The numerical results are generally reliable, but an experimental validation is necessary for detailed understanding of the mechanism. Before expensive experiments are conducted, it is recommended to perform a sensitivity study to emphasize important parameters. This sensitivity study is performed concerning a radial turbine for an operating point at which the liquid film travels into the tip clearance. In this paper it will be shown how the thickness and movement of the liquid film change with variation in influencing parameters. Finally, model constants that have the strongest influence on the calculated film motion are highlighted.

Copyright © 2014 by Siemens AG

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In