0

Full Content is available to subscribers

Subscribe/Learn More  >

A Static Test Facility for the Study of Deposit Fouling on Steam Turbine Blades

[+] Author Affiliations
Alan May Estebaranz, Simon Hogg, Michael Hilfer, Phil Dyer

Durham University, Durham, County Durham, UK

Paper No. GT2014-25517, pp. V01BT27A014; 9 pages
doi:10.1115/GT2014-25517
From:
  • ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
  • Volume 1B: Marine; Microturbines, Turbochargers and Small Turbomachines; Steam Turbines
  • Düsseldorf, Germany, June 16–20, 2014
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4558-5
  • Copyright © 2014 by ASME

abstract

For several decades it has been recognised that deposition on the surfaces of steam turbine blades during operation can result in significant loss in thermal performance and, in some cases, a large reduction in the steam swallowing capacity. One principal cause of deposit fouling on HP turbines is copper, although other elements, for example silicon, can also be problematic. Copper is initially corroded from condenser and feedheater tubes by the water which then contaminates the inner surfaces of the boiler as the water is evaporated. The steam from the boiler becomes contaminated with copper oxides as a result of the copper fouling inside the boiler. The solubility of copper compounds in steam is a strong function of pressure. As the steam expands through the turbine and pressure reduces, the copper oxides deposit out onto the blade surfaces, roughening them and resulting in loss of performance [1].

A test facility is being developed by Durham University to allow copper deposition under real steam conditions to be investigated in a laboratory environment. The facility consists of a non-flow ‘box test’ type arrangement. The initial experimental arrangement consisted of a single reactor vessel. Superheated steam at typical boiler conditions was created in the reactor vessel and held at these conditions for several 10’s of hours. The reactor vessel also contains a copper sample and a sample of target blade material. During this first stage of the test, copper dissolves into the steam, contaminating it with copper metal and its oxides. In the second stage of the test the steam conditions are quickly reduced to lower pressure values that are representative of the latter stages of a typical HP turbine cylinder from a large fossil-fired unit. The reduced solubility of copper in steam at the lower pressure results in copper depositing out onto the sample of blade material.

Conditions are held constant again for 10’s of hours during this second stage of the test, to allow sufficient time for a reasonable amount of deposition to occur. The reactor vessel is then cooled and the sample of blade material removed for analysis.

Results from some initial testing using the single reactor vessel arrangement are described in this paper. The results demonstrate that it is possible to create a copper transport and deposition process under representative steam conditions using a test facility of this type.

It was found to be difficult to control, accurately, the single reactor vessel tests, particularly during the second phase when the steam conditions were reduced. A revised test set-up is proposed consisting of two reactor vessels, in order to improve the operability of the facility.

The ultimate aim of the work is to use this facility to investigate, systematically, deposition under different steam conditions and to produce a physically based model of the process. The facility will be validated by comparing test results with deposit samples taken from real turbines that experience copper fouling during operation.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In