0

Full Content is available to subscribers

Subscribe/Learn More  >

Unsteady Flow in Extraction Modules of Industrial Steam Turbines

[+] Author Affiliations
Andreas Schramm, Tim Müller, Ronald Mailach

Ruhr-Universität Bochum, Bochum, Germany

Thomas Polklas, Oliver Brunn

MAN Diesel & Turbo SE, Oberhausen, Germany

Paper No. GT2014-25394, pp. V01BT27A009; 10 pages
doi:10.1115/GT2014-25394
From:
  • ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
  • Volume 1B: Marine; Microturbines, Turbochargers and Small Turbomachines; Steam Turbines
  • Düsseldorf, Germany, June 16–20, 2014
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4558-5
  • Copyright © 2014 by ASME

abstract

Industrial steam turbines are designed for application in power-, process- and chemical engineering. Particular modules ensure the optimum integration into power plants and other engineering processes. Extraction modules allow the controlled extraction of large steam quantities on certain and constant enthalpy levels. Valves regulate the amount of steam extracted from the turbine expansion path. Depending on the valve lift, different flow separation phenomena can occur peripherally inside the valves, causing undesired large unsteady fluid forces on the valve head and seat. Due to the compact design of the industrial steam turbines, these unsteady jets can influence the rotor dynamics as well as the blade loading of the adjacent stages. These fluctuations should be understood and avoided in order to enhance the reliability of steam turbines.

In the present study the unsteady flow phenomena due to separation occurring circumferentially inside the valve of extraction modules are investigated numerically. First, the commercial 3D RANS CFD-solver (ANSYS CFX 14) is validated in the application to experimental results. Subsequently, the various flow patterns of the examined valve design are analyzed on a standalone numerical valve model in an extensive study.

In order to assess the impact of these unsteady flow separations on other components, the complete extraction module is simulated in combination with the adjacent stages. The transient simulation results show pressure fluctuations downstream of the valves resulting in an unsteady load of the control valves, the shaft and the blading.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In