0

Full Content is available to subscribers

Subscribe/Learn More  >

A Matching Method for Two-Stage Turbocharging System

[+] Author Affiliations
Yanbin Liu, Weilin Zhuge, Yangjun Zhang

Tsinghua University, Beijing, China

Shuyong Zhang, Junyue Zhang, Xuemin Huo

The North Engine Research Institute, Tianjin, China

Paper No. GT2014-26682, pp. V01BT24A019; 11 pages
doi:10.1115/GT2014-26682
From:
  • ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
  • Volume 1B: Marine; Microturbines, Turbochargers and Small Turbomachines; Steam Turbines
  • Düsseldorf, Germany, June 16–20, 2014
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4558-5
  • Copyright © 2014 by ASME

abstract

The turbine system of a two-stage turbocharger composed of high pressure turbine, low pressure turbine and by-pass valve decides distribution and utilization of exhaust gas energy and influence performance of two-stage turbocharger in whole operational conditions. Besides, characteristics of turbine is expressed by envelop line of characteristic lines in different speeds. So turbine can be conveniently selected compared with compressor with similarity theory. Therefore two-stage turbocharger matching begins from turbine system matching in the paper. In two-stage turbocharger, cooler efficiency, cooler loss and by-pass valve open besides turbochargers will influence turbocharging system performance and design of cooler and by-pass valve are important contents of turbocharging system matching. The paper matched inter cooler, by-pass valve open, compressors and turbines jointly. Calculation model for turbocharger matching was built, and turbine performance is get from reference turbine based on similarity theory; influence of compressor ratio distribution, cooler efficiency and pressure drop in cooler imposing on compressor work was analyzed; and influence of turbine flow capacity and by-pass valve imposing on output working in expanding process was studied; the method for matching of two-stage turbocharging system in whole operational condition is studied Matching analysis was made aiming at two-stage turbocharging system of a type of high power density diesel engine, and design for turbocharging system was finished. Matching result using the method is compared to matching result using traditional method. Analysis result proves that using the method matching points in different operational conditions are located in more reasonable zone of compressor MAP.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In