Full Content is available to subscribers

Subscribe/Learn More  >

Real-Time Simulation of Rotor Blade Aeroelasticity for the Multidisciplinary Design of Rotorcraft

[+] Author Affiliations
Ioannis Goulos, Vassilios Pachidis

Cranfield University, Bedfordshire, UK

Paper No. GT2014-26882, pp. V01AT01A038; 15 pages
  • ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
  • Volume 1A: Aircraft Engine; Fans and Blowers
  • Düsseldorf, Germany, June 16–20, 2014
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4557-8
  • Copyright © 2014 by ASME


This paper elaborates on the theoretical development of a mathematical approach, targeting the real-time simulation of aeroelastic rotor blade dynamics for the multidisciplinary design of rotorcraft. A Lagrangian approach is formulated for the rapid estimation of natural vibration characteristics of rotor blades with nonuniform structural properties. Modal characteristics obtained from classical vibration analysis methods, are utilized as assumed deformation functions. Closed form integral expressions are incorporated, describing the generalized centrifugal forces and moments acting on the blade. The treatment of three-dimensional elastic blade kinematics in the time-domain is thoroughly discussed. In order to ensure robustness and establish applicability in real-time, a novel, second-order accurate, finite-difference scheme is utilized for the temporal discretization of elastic blade motion. The developed mathematical approach is coupled with a finite-state induced flow model, an unsteady blade element aerodynamics model, and a dynamic wake distortion model. The combined aeroelastic rotor formulation is implemented in a helicopter flight mechanics code.

The aeroelastic behavior of a full-scale hingeless helicopter rotor has been investigated. Results are presented in terms of rotor blade resonant frequencies, airframe–rotor trim performance, oscillatory structural blade loads, and transient rotor response to control inputs. Extensive comparisons are carried out with wind tunnel and flight test measurements found in the open literature, as well as with non-real-time comprehensive analysis methods. It is shown that, the proposed approach exhibits good agreement with flight test data regarding trim performance and transient rotor response characteristics. Accurate estimation of structural blade loads is demonstrated, in terms of both amplitude and phase, up to the third harmonic component of oscillatory loading. It is shown that, the developed model can be utilized for real-time simulation on a modern personal computer. The proposed methodology essentially constitutes an enabling technology for the multidisciplinary design of rotorcraft, when a compromise between simulation fidelity and computational efficiency has to be sought for in the model development process.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In